Atlantic Recycling Equipment, LLC
Refuse Equipment Sales and Service
13 JESSIE DOE RD
ROLLINSFORD, NH 03869
Phone: 603-749-2414 Fax: 603-749-2421
WWW.ATLANTICRECYCLINGEQUIPMENT.COM

Quotation
Date: 8/20/2020
Quotation #: 1947
Quotation Valid until: 9/21/2020
Prepared by: JO

<table>
<thead>
<tr>
<th>Project</th>
</tr>
</thead>
</table>
| 192 North Road
Chebeague Island, ME 04017
USA |

| Notes | 245IP Compactor |

<table>
<thead>
<tr>
<th>Qty</th>
<th>Item</th>
<th>Description</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compactor</td>
<td>New Model 245IP, 2 yard Stationary Compactor with the following Specifications: Remote 10HP, Tri-volt 208/230/460, TEFC, Three (3) Phase power unit, UL/CSA Listed, Waste rated, Multicycle Timer, 100% Full Light, ANSI Z 245.2 Compliant, Guardian Control System, NEMA 4 Rated Control Panel, Heavy Duty Ratchet Binders, Override-Packout Hydraulic Pressure Boost, (AMS) Automatic Maintenance Scheduler, Low Temperature Hydraulic Oil, Compactor Controls & Pressure gauge - Color Coded & Numeric on Fifteen (15') remote, Oil Heater installed in the tank, One (1) - Five (5') foot container guide. Painted Dark Green. 10HP Remote Single Phase Power unit to be mounted on the rear of the compactor & plumbed with bulkhead Fittings, Control panel location to be determined after site review. Controls on 15' remote pendant in lieu of mounting in panel face, Factory option for Stationary & Self-Contained Models. - Factory installed.</td>
<td>12,500.00</td>
<td>12,500.00</td>
</tr>
<tr>
<td>1</td>
<td>_misc</td>
<td>300.00</td>
<td>300.00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WQCO122</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Total

THIS PRICES DO NOT INCLUDE ANY APPLICABLE TAXES.

Payment Terms: 30 DAYS

Any alterations or deviations from the above specifications involving extra costs will be executed only upon written orders, and will become an extra charge to this quotation. All agreements are contingent upon strikes, accidents, or delays beyond our control. Owner to carry all necessary insurance coverage. Our employees are fully covered by workers compensation insurance.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Acceptance:
The above quoted pricing, specifications and conditions are satisfactory and are hereby accepted. You are authorized to perform the job.

Authorized
Signature: ________________________ Date: ________________________

Please email signed quote to admin@arenh.com or fax to 603-749-2421

THANK YOU FOR YOUR BUSINESS!

Page 1
Atlantic Recycling Equipment, LLC
Refuse Equipment Sales and Service
13 JESSIE DOE RD
ROLLINSFORD, NH 03869
Phone: 603-749-2414 Fax: 603-749-2421
WWW.ATLANTICRECYCLINGEQUIPMENT.COM

Submitted To:
Chebeague Island, ME Town of
192 North Road
Chebeague Island, ME 04017
Marjorie E Stratton

Notes

245IP Compactor

Quotation

Date 8/20/2020
Quotation # 1947

Prepared by: JO

Project
192 North Road
Chebeague Island, ME 04017
USA

Terms
Net 30

<table>
<thead>
<tr>
<th>Qty</th>
<th>Item</th>
<th>Description</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WQCO1403</td>
<td>Oil heater thermostatically controlled, 10-60 gallon reservoir. - Factory installed</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>WQCO166</td>
<td>Pressure gauge - color coded and numeric - on 15' hose-mounted. - Atlantic Installed</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>WQCO201</td>
<td>Guide Rails - 5’ standard, available on 145-245-265X & 345. - Atlantic Supplied</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>WQCO288</td>
<td>Single phase motor / 5HP or 10HP with self diagnostic readout. - Factory Supplied</td>
<td>1,475.00</td>
<td>1,475.00</td>
</tr>
<tr>
<td>1</td>
<td>FABRICATION</td>
<td>Three (3) Sided Open hopper to Meet ANSI & OSHA Safety Codes. Painted to match the compactor. (loading side to be driven side of compactor). - Atlantic Designed and Built.</td>
<td>1,350.00</td>
<td>1,350.00</td>
</tr>
<tr>
<td>1</td>
<td>Freight</td>
<td>Barge Charges will be the responsibility of Chebeague Island, ME. Schedule for install will be set once we have the compactor in our yard and ready to go.</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>Installations</td>
<td>Removal of the existing compactor and Installation of the New compactor into location. Atlantic will wire the power unit back into the existing Electrical Disconnect, test for proper operation and conduct Operators and Maintenance training for Town Operators.</td>
<td>2,750.00</td>
<td>2,750.00</td>
</tr>
</tbody>
</table>

Total

THese PRICES DO NOT INCLUDE ANY APPLICABLE TAXES.

Payment Terms: 30 DAYS

Any alterations or deviations from the above specifications involving extra costs will be executed only upon written orders, and will become an extra charge to this quotation. All agreements are contingent upon strikes, accidents, or delays beyond our control. Owner to carry all necessary insurance coverage. Our employees are fully covered by workers compensation insurance.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Acceptance:
The above quoted pricing, specifications and conditions are satisfactory and are hereby accepted. You are authorized to perform the job.

Authorized
Signature: ____________________________ Date: ____________________________

Please email signed quote to admin@arenh.com or fax to 603-749-2421

THANK YOU FOR YOUR BUSINESS!
Atlantic Recycling Equipment, LLC
Refuse Equipment Sales and Service
13 JESSIE DOE RD
ROLLINSFORD, NH 03869
Phone: 603-749-2414 Fax: 603-749-2421
WWW.ATLANTICRECYCLINGEQUIPMENT.COM

Submitted To:
Chebeague Island, ME Town of
192 North Road
Chebeague Island, ME 04017
Marjorie E Stratton

Quotation
Date: 8/20/2020
Quotation #: 1947
Quotation Valid until: 9/21/2020
Prepared by: JO

<table>
<thead>
<tr>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>192 North Road</td>
</tr>
<tr>
<td>Chebeague Island, ME 04017</td>
</tr>
<tr>
<td>USA</td>
</tr>
</tbody>
</table>

| Terms | Net 30 |

<table>
<thead>
<tr>
<th>Qty</th>
<th>Item</th>
<th>Description</th>
<th>Rate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current Factory Lead Time is Eight (8) weeks after receipt of this signed for approval and emailed to back to our office. The Town will be responsible to have a concrete pad installed and the Proper sized Electrical Disconnect installed and ready for us to wire the power unit to at the time of installation. If Atlantic has to make a return trip due to the Town not having the Electrical installed, there will be additional charges for the return trip to complete the original install.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THESE PRICES DO NOT INCLUDE ANY APPLICABLE TAXES.

Payment Terms: 30 DAYS

Any alterations or deviations from the above specifications involving extra costs will be executed only upon written orders, and will become an extra charge to this quotation. All agreements are contingent upon strikes, accidents, or delays beyond our control. Owner to carry all necessary insurance coverage. Our employees are fully covered by workers compensation insurance.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Acceptance:
The above quoted pricing, specifications and conditions are satisfactory and are hereby accepted. You are authorized to perform the job.

Authorized
Signature: __________________________ Date: ________________

Please email signed quote to admin@arenh.com or fax to 603-749-2421

THANK YOU FOR YOUR BUSINESS!

Page 3
Hi Chris
Please put the following email in the packet with the other dredging info. There may be one more.
Donna.

Good afternoon,

I just received a call from Mark Habel, Army Corps of Engineers. First, he explained that our Project Manager, Adam Burnett, has been ill. My last correspondence with Adam was May 27, 2020 and I could not reach him beginning June 9th. He is still not back in the office. Mark Habel said that no one in the Army Corps office picked up the ball on our project and he wasn’t sure why that happened.

Mark and I discussed the eelgrass mitigation that will be necessary for our project. There are two options, one is to pay into the In-Lieu Fee (ILF) program to the State of Maine. This is estimated at approximately $342,000 although Mark wasn’t completely sure of the exact amount. The other option is to rehabilitate impacted eelgrass beds by replacing traditional moorings with new conservation moorings.

The point is that a decision needs to be made about the direction to move toward. ACOE want to issue a draft report soon, so they plan to issue the draft report with the anticipated ILF payment but leave the options open to mitigate impacts instead of paying the fee. The cost of construction is now $1,600,000. The Town pays 10% up front and 10% at completion. So we will need approximately $320,000 for the project. If we pay part of the ILF, that is another 20% or $68,400. So we could be looking at $388,400 or more.

We currently have a little over $100,000 in our reserve fund. The original cost estimate was $1,000,000 in 2014 and I was always told that the Town’s cost would be 10%. It is actually 20%. I’d have to go back and look at the earlier reports, but I seem to remember the 10% mentioned.

I asked Mark if there is anything the Town can do at this point. He said we didn’t need to take any action. ACOE wants to get the draft report in our hands as soon as possible. Then they will need a letter from the Town in order to proceed with design and construction.
Great Chebeague Island Navigation Improvement Project
Casco Bay, ME
JULY 2017

PREDREDGE SURVEY FOR
SUBMERGED AQUATIC VEGETATION

GREAT CHEBEAGUE ISLAND
NAVIGATION IMPROVEMENT PROJECT

CASCO BAY, MAINE

December, 2017

Prepared by:

Planning Division
Environmental Resources Section
U.S. Army Corps of Engineers
New England District
Concord, Massachusetts
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1
2.0 MATERIALS AND METHODS ... 1
3.0 DATA PROCESSING .. 2
4.0 RESULTS AND DISCUSSION .. 3

FIGURES

FIGURE 1: SAV SURVEY PLAN... 4
FIGURE 2: SAV PERCENT COVER AND VIDEO SURVEY STATIONS 5
FIGURE 3: SAV CANOPY HEIGHT .. 6
FIGURE 4: JULY 2017 EELGRASS AREAS .. 7

APPENDICES

APPENDIX A: VIDEO SCREEN CAPTURE LIBRARY
1.0 INTRODUCTION

The Town of Chebeague Island is comprised of several islands located in the upper portion of Casco Bay, in Cumberland County, Maine. Great Chebeague, the largest and most populated island, is the center for town commerce and features a landing and stone pier along the northwest shore which serves as the town’s principal link to the mainland. Town officials report that shallow water depth hinders operation of the many activities that rely on the landing, including commercial fishing, barging, and ferry operations. As the Island’s principal landing, public safety, the island economy, and island services all depend on adequate access to the mainland from this point.

The Town of Chebeague Island has requested that the New England District (NAE) of the U.S. Army Corps of Engineers (USACE) investigate the potential of establishing a federal channel to allow full time vessel traffic to the Great Chebeague Island landing. The results of this investigation determined that a 0.5 acre turning basin and a 100 to 150 feet wide channel extending approximately 1,600 feet from the stone pier northwest to deep water would be required to meet the project objectives. The dredged depths for the turning basin and channel would be 8 and 10 feet, respectively, at mean lower low water (MLLW) plus 1 foot of allowable overdepth. This would produce approximately 33,000 cubic yards of mixed gravel, sand, and silt. It is expected that this material would be mechanically dredged and placed at the Portland Disposal Site (PDS).

This report describes a video and hydroacoustic survey effort conducted by NAE in July of 2017 to characterize submerged aquatic vegetation (SAV) in the vicinity of the proposed dredge area. Areas in and adjacent to the proposed channel alignment have been identified as eelgrass (Zostera marina) habitat by the Maine Department of Marine Resources through the interpretation of 2013 aerial photography. The objective of the NAE survey effort was to document the location and relative density of eelgrass beds in or adjacent to the proposed dredge footprint in order to minimize any detrimental effects to the beds from the proposed action.

2.0 MATERIALS AND METHODS

Video and hydroacoustic survey efforts were conducted on 18 July of 2017 by staff from the NAE Environmental Resources Section. Work was carried out on a 17 foot Boston Whaler outfitted for shallow water survey operations. Positioning was achieved using a Hemisphere R330 Global Positioning System (GPS) receiving real time differential corrections. The system was interfaced with a computer running HyPack® for navigation and Biosonics Visual Acquisition software for real time visualization and recording of sonar data.

Forty-three survey transects were pre-planned in ESRI ArcGIS using a spacing of 50 feet in an orientation perpendicular to the proposed channel alignment. These transects were laid out to provide adequate coverage of the proposed dredge area in the vicinity of SAV beds identified by the Maine Department of Marine Resources (MEDMR) through interpretation of 2013 orthophotography (available through the MEDMR website:...
http://www.maine.gov/dmr/rm/eelgrass/). The planned survey transects for the project area are presented as Figure 1.

Hydroacoustic data was collected using a BioSonics MX echosounder with a 204.8 kHz, 8.7° calibrated transducer operating at a 5Hz ping rate. The transducer was fixed to an adjustable boom mounted along the starboard side of the vessel. The face of the transducer was adjusted to be 16 inches below the water surface. The boat operator navigated all transects at a speed of approximately 3.5 knots (4.0 mph) while recording data. Adjacent transects were run in opposite directions to minimize non-recording time. Transect information including the number, filename, start and stop time, direction, and observations of bottom type and SAV were recorded in a field log during the survey. Sonar data was viewed in real time and recorded using Biosonics Visual Acquisition software. Waypoints were created throughout the survey to mark changes in bottom type and features of interest identified in real time to be later investigated during the video survey.

Video footage was collected at 25 stations corresponding to waypoints created during the acoustic survey. Video was collected using a Sea Viewer Sea-Drop 650 Underwater Video Camera and recorded to a portable DVR system outfitted with an LCD monitor for real time viewing. The camera was weighted with a 5lb downrigger weight and deployed off the starboard side of the vessel. The camera was allowed to remain on the bottom for approximately 5 to 10 seconds at each station, observing 5 to 10 linear feet of bottom with typical vessel drift. Depth and directional adjustments of the camera were made manually by USACE personnel positioned on deck. Real time observations of bottom type, macro algae, or eelgrass beds were recorded in the field notebook.

3.0 DATA PROCESSING

The .DT4 files containing the hydroacoustic data from each transect were processed using Biosonics Visual Habitat software. This software uses multiple algorithms augmented by user defined parameters to determine bottom depth, plant canopy height, and plant density for each sonar ping (defined as one transmit and receive cycle of the echosounder). The bottom depth and canopy height outputs for each transect were superimposed on a colorized echogram along with aligned data plots of plant density and reviewed for accuracy. Any erroneous data points (i.e. inaccurate bottom depth or canopy height outputs resulting from acoustic artifacts or noise in the water column) were manually corrected by the reviewer. The finalized outputs were combined into data points representing average percent cover and canopy height for every five sonar pings and exported as geo-referenced CSV files.

Video files were reviewed using CyberLink PowerDirector video editing software. Representative screen captures were created from the footage collected at each video station. In addition, the name of each station, waypoint GPS coordinates, and a brief description of the video content (bottom type, macro algae, and eelgrass present) were recorded in a Microsoft Excel spreadsheet and compared to the field notes collected
during the video survey. The screen capture database and library are presented as appendix A of this report.

The CSV file containing the processed and compiled Visual Habitat output was imported into ArcGIS as a point shapefile and then interpolated using inverse distance weighting methodology to produce a gridded raster representing SAV percent cover for each survey area. This data was compared with the video footage from each station to validate the Visual Habitat output and delineate areas of SAV coverage corresponding to eelgrass beds. This data was also compared in ArcGIS with the MEDMR eelgrass coverage for the project area. A map depicting SAV percent cover for the survey area and video survey stations separated into two classes based on the presence or absence of eelgrass is presented as Figure 2. Interpolated SAV canopy height within the survey area is presented as Figure 3. Areas delineated as eelgrass (either beds or interspersed with other SAV) are presented as Figure 4.

4.0 RESULTS AND DISCUSSION

A total of 39 transects covering 2.2 linear miles were successfully run with a cumulative 12,730 processed output points. Direct comparison between the Visual Habitat output and video survey observations demonstrated excellent agreement. Transects one through four could not be run do to shallow water depths. This area was visually inspected and determined to be unvegetated. It should be noted that shallow depths and water clarity enabled the field crew to make visual observations of the surrounding bottom conditions from the surface in much of the project area.

Analysis of the MEDMR eelgrass coverage for the project area from 1997-2013 suggests that a contiguous and fairly stable eelgrass bed has persisted in and along the western side of the proposed channel during that time period. Examination of the 2017 NAE survey data confirms that the spatial extent of the existing SAV beds are consistent with historic coverage and that the primary species of SAV growing in the survey area is Zostera marina.

The eelgrass bed along the western side of the proposed project footprint was observed to begin at the top of the slope associated with the existing town channel and extend beyond the western survey boundary. Bottom conditions in the outer portion of the proposed project area consisted of unvegetated fine sand and silt with numerous burrows. The eastern portion of the channel adjacent to the town landing was documented as unvegetated fine sand and silt with a layer of leafy organic debris and eelgrass wrack at the surface. The area in the vicinity of the to the boat ramp along the southernmost portion of the town landing was found to be coarse substrate consisting of cobble, gravel, and shell. During the course of the survey a landing craft style ferry was observed to line up with the boat ramp and use its thrusters to maintain position during loading and unloading operations. It is assumed that this is the reason for the rapid change in sediment type between the inner and outer portions of the project area.
APPENDIX A

VIDEO SCREEN CAPTURE LIBRARY
Appendix A: Video Screen Capture Library

TABLE 1: SCREEN CAPTURE INDEX

<table>
<thead>
<tr>
<th>STATION</th>
<th>LAT</th>
<th>LONG</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.753109</td>
<td>-70.110115</td>
<td>Fine sand and silt with scattered macroalgae</td>
</tr>
<tr>
<td>2</td>
<td>43.753220</td>
<td>-70.109845</td>
<td>Fine sand and silt with burrows and scattered macroalgae</td>
</tr>
<tr>
<td>3</td>
<td>43.752953</td>
<td>-70.109701</td>
<td>Fine sand and silt with scattered macroalgae</td>
</tr>
<tr>
<td>4</td>
<td>43.752940</td>
<td>-70.109367</td>
<td>Fine sand and silt with burrows</td>
</tr>
<tr>
<td>5</td>
<td>43.752757</td>
<td>-70.109818</td>
<td>Fine sand and silt with burrows</td>
</tr>
<tr>
<td>6</td>
<td>43.752757</td>
<td>-70.109448</td>
<td>Sparse eelgrass on sand and silt</td>
</tr>
<tr>
<td>7</td>
<td>43.752718</td>
<td>-70.109133</td>
<td>Sparse eelgrass on sand and silt</td>
</tr>
<tr>
<td>8</td>
<td>43.752660</td>
<td>-70.109277</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>9</td>
<td>43.752484</td>
<td>-70.109655</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>10</td>
<td>43.752712</td>
<td>-70.108484</td>
<td>Macroalgae on coarse substrate</td>
</tr>
<tr>
<td>11</td>
<td>43.752451</td>
<td>-70.109061</td>
<td>Sparse to moderate eelgrass on sand and silt</td>
</tr>
<tr>
<td>12</td>
<td>43.752354</td>
<td>-70.109250</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>13</td>
<td>43.752204</td>
<td>-70.108880</td>
<td>Moderate eelgrass cover on sand and shell</td>
</tr>
<tr>
<td>14</td>
<td>43.752061</td>
<td>-70.109205</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>15</td>
<td>43.751945</td>
<td>-70.108729</td>
<td>Kelp, rockweed, and leafy debris</td>
</tr>
<tr>
<td>16</td>
<td>43.751826</td>
<td>-70.109007</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>17</td>
<td>43.751748</td>
<td>-70.108349</td>
<td>Sand, silt, shell, and scattered wrack</td>
</tr>
<tr>
<td>18</td>
<td>43.751625</td>
<td>-70.108745</td>
<td>Moderate eelgrass cover and leafy debris on sand and silt</td>
</tr>
<tr>
<td>19</td>
<td>43.751507</td>
<td>-70.108267</td>
<td>Leafy debris and eelgrass wrack on silt</td>
</tr>
<tr>
<td>20</td>
<td>43.751338</td>
<td>-70.108637</td>
<td>Moderate eelgrass cover on sand and shell</td>
</tr>
<tr>
<td>21</td>
<td>43.751273</td>
<td>-70.108421</td>
<td>Sand, gravel, and shell transitioning to eelgrass</td>
</tr>
<tr>
<td>22</td>
<td>43.751207</td>
<td>-70.108207</td>
<td>Sand, gravel, and shell substrate</td>
</tr>
<tr>
<td>23</td>
<td>43.751058</td>
<td>-70.108565</td>
<td>Dense eelgrass</td>
</tr>
<tr>
<td>24</td>
<td>43.750986</td>
<td>-70.108367</td>
<td>Moderate eelgrass cover on sand and shell</td>
</tr>
<tr>
<td>25</td>
<td>43.750921</td>
<td>-70.108069</td>
<td>Cobble, gravel, and shell substrate</td>
</tr>
</tbody>
</table>
Appendix A: Video Screen Capture Library

Station 3

Station 4
Appendix A: Video Screen Capture Library

Station 5

Station 6
Appendix A: Video Screen Capture Library

Station 7

Station 8
Appendix A: Video Screen Capture Library

Station 9

Station 10

No image. Station visually inspected from surface.
Appendix A: Video Screen Capture Library

Station 11

Station 12
Appendix A: Video Screen Capture Library

Station 15

Station 16
Appendix A: Video Screen Capture Library

Station 17

Station 18
Appendix A: Video Screen Capture Library

Station 19

Station 20
Appendix A: Video Screen Capture Library

Station 23

Station 24
Appendix A: Video Screen Capture Library

Station 25
GENERAL NOTES:
1. Boundaries are in feet and not to scale.
2. Topography shown is from 2011 aerial photography and/or
 NOAA Chart no. 75692. All topography, including shoreline,
 bridges, piers, etc., is located approximately unless otherwise
 noted and should be used as a general reference only.
3. Benchmark Date: BM Square 00132 is the primary benchmark
 set Feb. 10 at a point upstream, 820 ft. west, the only one on
 Indian Point.
4. Elevations shown are based on the 15-second National
 Grid System for the State of Maine (W3Z0122) & NAD 1983.
5. Survey performed using a Trimble 9200 RTK GPS system.
6. The sounding information shown on this map represents
 the sounding locations obtained from hydrographic
 surveying conducted during May-June 2017.
7. Additional sounding information is available upon request.
8. Field Book: RG-1303
August 20, 2020

Marjorie Stratton, Town Administrator
Town of Chebeague Island
192 North Road
Chebeague Island, ME 04017

Dear Marjorie,

We own a residential dwelling located at 72 Fire House Road, Chebeague Island, ME, Parcel ID# 103-030. This is letter is a request to the Town of Chebeague Island for permission to bury the above ground electrical power line currently running from the pole directly across the street from our house over to the west corner of the house. The intent of this letter is to ensure that the Town of Chebeague will not be responsible for any expenses related to our burying or maintaining the electrical power line under Fire House Road.

Jean Louis Beaupre ("Bo") will perform the work on Friday, August 21st. Bo will dig a trench approximately 18 inches wide across Fire House Road. The trench will be 36 inches deep per CMP request. Bo will install Schedule 80 pipe across the road and switch to Schedule 40 on our property. He will put down 12 inches of sand around the conduit, compact the sand, set power notification tape, add a 6-12 inch layer of inch and a half compacted gravel and add another power notification tape. He will finish off the installation with a layer of inch and a half compacted gravel.

If there are ever issues with our buried power line and we have to dig it up, we agree to pay all the expenses related to digging up the road, repairs and repaving that section of the road. This obligation to pay all the expenses related to any residential power line issues, including digging up the road, repairs and repaving that section of the road, extends to anyone who inherits our house, including our children.

Although unlikely, if we or our heirs, ever sell the residence, we or our heirs will disconnect the underground power and reconnect the above-ground power, and this agreement will no longer be necessary unless the buyer and the Town agree to sign a similar agreement allowing for the continuation of the buried power.

Sincerely,

Stephanie Hampton and Richard Schellens